Fourth Order Time-stepping for Low Dispersion Korteweg-de Vries and Nonlinear Schrödinger Equations
نویسنده
چکیده
Abstract. Purely dispersive equations, such as the Korteweg-de Vries and the nonlinear Schrödinger equations in the limit of small dispersion, have solutions to Cauchy problems with smooth initial data which develop a zone of rapid modulated oscillations in the region where the corresponding dispersionless equations have shocks or blowup. Fourth order time-stepping in combination with spectral methods is beneficial to numerically resolve the steep gradients in the oscillatory region. We compare the performance of several fourth order methods for the Korteweg-de Vries and the focusing and defocusing nonlinear Schrödinger equations in the small dispersion limit: an exponential time-differencing fourth-order Runge-Kutta method as proposed by Cox and Matthews in the implementation by Kassam and Trefethen, integrating factors, time-splitting, Fornberg and Driscoll’s ‘sliders’, and an ODE solver in Matlab.
منابع مشابه
für Mathematik in den Naturwissenschaften Leipzig Fourth order time - stepping for low dispersion
Purely dispersive equations as the Korteweg-de Vries and the nonlinear Schrödinger equation in the limit of small dispersion have solutions to Cauchy problems with smooth initial data which develop a zone of rapid modulated oscillations in the region where the corresponding dispersionless equations have shocks or blowup. Fourth order time-stepping in combination with spectral methods is benefic...
متن کاملAdomian Polynomial and Elzaki Transform Method of Solving Fifth Order Korteweg-De Vries Equation
Elzaki transform and Adomian polynomial is used to obtain the exact solutions of nonlinear fifth order Korteweg-de Vries (KdV) equations. In order to investigate the effectiveness of the method, three fifth order KdV equations were considered. Adomian polynomial is introduced as an essential tool to linearize all the nonlinear terms in any given equation because Elzaki transform cannot handle n...
متن کاملA Novel Approach for Korteweg-de Vries Equation of Fractional Order
In this study, the localfractional variational iterationmethod (LFVIM) and the localfractional series expansion method (LFSEM) are utilized to obtain approximate solutions for Korteweg-de Vries equation (KdVE) within local fractionalderivative operators (LFDOs). The efficiency of the considered methods is illustrated by some examples. The results reveal that the suggested algorithms are very ef...
متن کاملThe tanh method for solutions of the nonlinear modied Korteweg de Vries equation
In this paper, we have studied on the solutions of modied KdV equation andalso on the stability of them. We use the tanh method for this investigationand given solutions are good-behavior. The solution is shock wave and can beused in the physical investigations
متن کاملFourth Order Time-Stepping for Kadomtsev-Petviashvili and Davey-Stewartson Equations
Purely dispersive partial differential equations such as the Korteweg–de Vries equation, the nonlinear Schrödinger equation, and higher dimensional generalizations thereof can have solutions which develop a zone of rapid modulated oscillations in the region where the corresponding dispersionless equations have shocks or blow-up. To numerically study such phenomena, fourth order time-stepping in...
متن کامل